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Abstract

This thesis investigates the effectiveness of machine learning algorithms for
automatic detection of coniferous seedling data along Boreal seismic lines. In
order to obtain a survival assessment and survey of the restoration process
along these seismic lines, ground crews must undertake expeditions which are
expensive, potentially hazardous and difficult to scale. Since the seismic lines
cover a length of more than 10,000 km, an automated solution is necessary. The
literature describes several machine learning applications using satellite data
to extract information on topics such as forestation and expanse of deserts. In
contrast, we conduct experiments on small sites on the basis of drone imagery.
To this end we use algorithms from computer vision and apply them to the
drone image data. We use convolutional neural networks as a feature extractor
on the images. Subsequently, we train an object detector to spot the seedlings
and annotate them with bounding boxes. In this work we evaluate the accu-
racy of modern object detectors such as Faster R-CNN with regard to remote
sensing capacity of conifer seedlings. We further investigate the problem by
doing several experiments which focus on the special environmental variables
in nature, including seasons and flight height of the drone. These are necessary
to understand what conditions are beneficial to support the machine learning
process. Modern convolutional object detectors require huge amounts of data.
Meanwhile, we conduct experiments on the amount of data needed to achieve
high accuracy and we also investigate the influence of pretrained networks on
the object detector. We further employ error analysis to understand how the
object detector performs depending on the seedling size, to determine where
further improvements are possible. Finally, we suggest further research options
based on our findings.



Abstract

In dieser Arbeit untersuchen wir die Wirksamkeit von Machine Learning Algo-
rithmen zur automatischen Erkennung von Nadelbäumsetzlingen entlang bore-
aler seismischer Linien. Um eine Überlebensbeurteilung und eine Bestandsauf-
nahme des Sanierungsprozesses in den seismischen Linien zu erhalten, müssen
Bodenmannschaften Expeditionen durchführen, die teuer, potentiell gefährlich
und kaum skalierbar sind. Da alle seismischen Linien zusammen eine Länge von
mehr als 10.000 km besitzen, ist eine automatisierte Lösung notwendig. Die
Literatur beschreibt verschiedene Machine-Learning Lösungen bezüglich Satel-
litendaten, um Informationen wie etwa den Waldbestand oder Veränderungen
in der Wüstenbildung festzustellen. Unsere Arbeit hingegen untersucht kleine
Objekte auf der Basis von Drohnendaten. Um das zu erreichen, verwenden
wir Algorithmen aus dem Computer Vision Bereich und wenden sie auf Bild-
daten von Drohnen an. Wir verwenden neuronale Netze um die Attribute aus
den Bilder zu extrahieren. Anschließend trainieren wir einen Objektdetektor,
um die Setzlinge zu erkennen und mit Begrenzungskästchen zu versehen. In
dieser Arbeit bewerten wir die Genauigkeit moderner Objektdetektoren wie
Faster R-CNN auf der remote sensic Kapazität von Nadelbäumen. Wir un-
tersuchen das Problem weiter, indem wir mehrere Experimente durchführen,
die auf die speziellen Umgebungsvariablen in der Natur, wie Jahreszeiten und
die Auflösungsabhängigkeit eingehen. Diese sind notwendig, um zu verstehen,
welche Bedingungen notwendig sind, um den maschinellen Lernprozess zu un-
terstützen. Moderne neuronale Netze benötigen eine große Datenmenge, wir
führen Experimente über die benötigte Anzahl an Daten durch, die für eine
hohe Genauigkeit notwendig ist, und wir untersuchen den Einfluss welches das
vortrainieren der neuronalen Netze auf den Objektdetektor hat. Weiterhin
führen wir eine Fehleranalyse durch, um zu verstehen, wie sich der Objek-
tdetektor in Abhängigkeit von der Setzlingsgröe verhält, um zu sehen, wo
weitere Verbesserungen möglich sind. Am Ende erötern wir weitere zukünftige
Forschungsmöglichkeiten.
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Chapter 1

Introduction

Human intervention in natural habitats often has far-reaching consequences.
The global energy industry and its land use has a huge impact. Canada’s
boreal forests face rapid land use change across the globe compared to other
environments. Western Canada’s boreal forest soil contains at least one-third
of the worlds proven oil reserves [Heb17]. The oil and gas industry has cut
more timber than the forest industry in order to develop energy infrastructure.
The widespread land use changes have transformed Alberta’s forests into an
industrialized landscape with a large network of energy-related infrastructure
sites, including roads, transmission lines, pipelines, seismic exploration lines
and well sites. The woodland caribou, which is an umbrella species for the
Boreal forest, depends on old growth coniferous forests and boreal peatland
complexes. The huge network of roads and seismic exploration lines has in-
creased encounter rates between wolves and caribous [BMF+13]. This has led
to a situation in which 28 of 57 populations of boreal woodland caribou and
20 of 25 southern mountain populations are in decline. Scientists have recog-
nized the land use changes as the reason for the decline of the caribou and
the government is now trying to mitigate the damage and preserve the pop-
ulations. The local authorities have released a restoration framework called
LIRA, which aims to restore the seismic lines. The total length of old seismic
lines to be restored exceeds 10,000 km. This massive distance is nearly impos-
sible to monitor manually. In recent years, new technology such as unmanned
aerial vehicles and improvements in camera sensors have made it possible to
take high quality images of the seismic line restoration process. This thesis
aims to show that it is possible to extract information from these images with
machine learning algorithms. Information about the number, growth and lo-
cation of planted seedlings is needed in order to guarantee the success of the
restoration effort.
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CHAPTER 1. INTRODUCTION

1.1 Structure of the thesis

In the second chapter of the thesis we review the concepts of convolutional
neural networks (CNNs), including their different layers and characteristics.
In particular, we examine two modern architectures of CNNs: Inception Net
and ResNet. We then discuss how CNNs can be used as a feature extractor
for object detectors. The fourth chapter puts forth the problem statement and
introduces the dataset we used and problems that occurred during the work.
In the fifth chapter we explain the experiment environment and provide the
technical details of the software and hardware we used. The sixth chapter
includes multiple experiments with different object detectors and techniques
such as data augmentation. We also carried out experiments to gain an un-
derstanding of how the flight height of UAV and boreal seasons influence the
results of the object detection task. In the penultimate chapter we perform an
error analysis to obtain an impression of how the architectures we used can be
further optimized for better results. In the final chapter we discuss our results
and present ideas for future research.
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Chapter 2

Background

This chapter introduces convolutional neural networks, as modern object de-
tectors use them as feature extractors. In the following section we explain
which operations convolutional neural networks perform and of the layers
that they consist of. The second and third sections introduce two modern
convolutional architectures, the Inception Net [SLJ+14] and then the ResNet
[HZRS15].

2.1 Convolutional neural networks

Convolutional neural networks [LBD+89] (CNNs) are specialized neural net-
works for grid data such as images or time-series. Time-series data can be
thought of as a 1-D grid with values at each time step, and images as 2-D
grids of pixels. CNNs have been incredibly successful in practical applications.
They are based on a linear operation called convolution. In machine learning
applications the input is often a multidimensional array of data and the kernel,
also called the filter, is a multidimensional array of parameters which we want
to learn. In the event that we have a two-dimensional image I with indexes i
and j as the input, we also use a two-dimensional kernel K: The convolution
operation S is then defined by the following:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n).

The convolution operation is commutative, so we can also write.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n).

Neural network libraries implement a related function called cross-correlation,
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CHAPTER 2. BACKGROUND

which is the same as convolution without flipping the kernel.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n).

Figure 2.1 shows an example of cross-correlation. This technique has the ad-
vantage that we do not need to calculate the kernel flipping operation, since
the neural network is able to learn the flipped kernel K by itself. The downside
is that the operation is no longer commutative. However, the neural network
often consists of other functions that do not commute regardless of whether or
not the convolution operation is commutative.

Figure 2.1: Example of cross-correlation convolution from [GBC]. The kernel
moves in a sliding window approach over the input and generates the output.
This configuration is called valid because there is no padding at the edges.

In the next section we motivate the usage of CNNs instead of multi-layer-
perceptrons(MLPs) for grid data. We then provide a short introduction to the
different layers that a convolution neural net consists of.

2.1.1 Motivation

A black-and-white image from our seedling dataset has the resolution of 512×
512 pixels. A useful operation for object detection is an edge detector. To
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CHAPTER 2. BACKGROUND

build an edge detector one can subtract for each pixel the value of its neigh-
boring pixel (either horizontal or vertical). This transformation can be de-
scribed by a convolution kernel containing two elements. It would require
511 · 512 · 3 = 786, 432 floating point operations (one addition and two multi-
plication per output pixel) to compute it. If we used a feed forward network
with matrix multiplication instead, it would save 511 · 512 · 511 · 512 entries in
a matrix. The standard matrix multiplication algorithm with a runtime from
O(n3) would perform 5124 · 2 floating point operations (one addition and one
multiplication). The convolution operation would therefore be 174,762 times
more computationally efficient than matrix multiplication. For linear transfor-
mations that are applied to small local regions across the entire input image,
convolution is an extremely efficient method.

In the following, we will present three central ideas from convolutional neural
networks that support them to process large inputs efficiently.
Parameter sharing refers to the concept that we can use one kernel multiple
times over different regions in a model. Contrary to a traditional neural net
where each entry in the weight matrix is used only once in the forward prop-
agation step, in convolutional neural networks the filters are applied multiple
times. For low level features like edge detection, it is beneficial not to have to
store large weight matrices to detect edges.
Parameter sharing gives the convolution layer a property called equivariance
to translation. A function f(x) is equivariant to a function g if f(g(x)) =
g(f(x)). In the context of convolution, g can be any function that translates
the input, then the convolution (f(x)) is equivariant to g. This property is
important for the feature extraction process because convolution creates a 2-D
map where features appear in the input. The feature representation should
move the same amount if the object in the input moves. This is a useful
trait for edge detection, as the same edges appear approximately everywhere
in the image. Therefore, if we want to share parameters across the image, it
should not depend on the order of functions. Figure 2.2 shows an example of
parameter sharing.
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CHAPTER 2. BACKGROUND

Figure 2.2: Example of parameter sharing from [GBC]. Black arrows indicate
that a parameter is computed and saved to connect multiple nodes. In convo-
lutional neural networks the parameter is shared over all connections (Top).
In the example below, one parameter is used only for a single connection, no
parameter sharing occurs and multiple parameters for each layer are necessary.
This is the case in traditional neural nets.

Another important concept with regard to CNNs is sparse interactions.
Sparse interactions (also called sparse connectivity or sparse weights) are ac-
complished by having a kernel smaller than the input. For example, one image
in the seedling dataset has the resolution 512 × 512 × 3, but we can detect
meaningful features such as edges with filters only tens or hundreds of pix-
els in size. The consequence is that we have to store fewer parameters which
reduces both the memory requirements and also the computation effort. A
further consequence is that we have to learn fewer parameters and therefore
don’t need very much data. Sparse connectivity also leads to an effect called
receptive field(see figure 2.3).
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CHAPTER 2. BACKGROUND

Figure 2.3: Example of sparse interactions from [GBC]. The upper example
demonstrates how a given output unit s3 is influenced by the input units
x2, x3 and x4 (kernel with a size of 3) in a convolutional neural net. The
lower example shows the connections in a traditional fully connected neural
net. Here each unit depends on all previous units.

Sparse connections enable the network to build low-level features like edge
detectors in early layers. These units are affected by only a few pixels. Con-
volutional neural networks are also able to generate high-level features in later
layers through the receptive field effect.

2.1.2 Convolution Layer

This section explains the hyperparameters of the convolutional layer in CNNs.
As one can see in figure 2.1 the convolution operation shrinks the input by
k+1, where k is the size of the kernel. If we have an image with the resolution
26× 24, the output of the convolution with a 3× 3 kernel would be 26− 3 + 1
and 24− 3 + 1 = 24× 22. Generally, the output dimensions for a two dimen-
sional input (n,m) with a two-dimensional kernel (i, j) is calculated as follows:

(n− i+ 1,m− j + 1)
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CHAPTER 2. BACKGROUND

This is a problem for deep convolutional neural networks with dozens of convo-
lutional layers, because after a few steps the input will shrink more and more
until only multiple small feature maps remain. Zero padding is a method
to avoid this shrinking. It adds zero values at the edges in order to make it
possible to retain the same dimensions. This configuration is called ’SAME’
since the convolution operation does not change the number of dimensions.
The calculation of the output dimension changes to the following:

(n− i+ 2 ∗ p+ 1,m− j + 2 ∗ p+ 1)

where p is number of zeros added to the input edges.
Another method to influence the output dimension besides changing the kernel
size or using padding is by changing the stride. A stride size of one can be
understood to mean that the filter has a step size of one while convolving over
the input data. One can calculate the output dimensions involving a stride
with the formula:

(
n− i+ 2 ∗ p+ 1

s
,
m− j + 2 ∗ p+ 1

s
)

The padding configuration, the filter size and the stride are important
hyperparameters for the convolution layer in CNNs.

2.1.3 Detector Layer

The detector layer consists of non-linear functions such as sigmoid or tangent
hyperbolic functions. The most commonly used function in convolutional nets
is the rectified linear unit (ReLu). The ReLu function is defined as follows:

f(x) =

{
0 if x < 0

x else

Detector layers introduce non-linearities in neural networks and enable
them to learn functions so that the output cannot be reproduced from a lin-
ear combination of the inputs. If we use only linear functions, the effect of
the network would just be a linear transformation of the input. To generate
a universal function approximator it is necessary to use non-linear functions
such as ReLu [Hor91].
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2.1.4 Pooling Layer

Pooling is a frequently used operation in convolutional neural networks. The
pooling layer is special in that it constitutes a layer without parameters. A
pooling function replaces the output of the previous layer with a summary
statistic. For example, the average pooling [ZC88] operation calculates the
average of a rectangular region. Pooling helps to make the features invariant
to small translations of the input. One can translate an image of a cat image
by a small amount and it still remains an image of a cat. This is often used for
images that have varying dimensions because it is possible to scale any dimen-
sions to a fixed representation by taking the maximum of the four quadrants
in an image. This is especially important in the classification layer where the
input must be of a fixed size.

The convolution layer, the detector layer and the pooling layer are the most
common layers in modern convolutional neural networks. Figure 2.4 shows the
stacking of these layers.

Figure 2.4: The components of a typical convolutional neural network accord-
ing to [GBC]. In the simple layer terminology the convolutional net is viewed
as a larger number of simple layers. In this terminology, not every layer has
parameters.
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2.1.5 Fully-connected layer

The hidden layers on top of a CNN are typically fully-connected layers. This
is often between a flattened output from a convolutional layer and a soft max
layer. However a fully-connected layer needs a small data volume because
otherwise it will have too many parameters and slow down the training. Stride
and pooling are often used in convolutional layers to reduce the data volume
before the fully-connected layers. A convolutional neural network which has
no such layers is called a fully convolutional network (FCN). If the network is
used for object detection, it usually does not need any fully-connected layers.
The convolutional network is used as a feature extractor in such cases.

The next two sections introduce two case studies, the Inception net [SLJ+14]
and the residual net [HZRS15]. Both of these are later used individually and
combined as feature extractors for object detection.

2.2 Inception Net / GoogLeNet

The first version of the Inception net, also called GoogLeNet, introduced the
concept of Inception modules in 2014. The most straightforward way to
improve the feature extraction process is by adding additional layers. This
can be done in two ways, through the depth of the network or the width of
the layer. Given the availability of a large amount of labeled training data,
this is a promising means of increasing the quality of the network. However
deeper/broader networks come with a computational burden. Increasing the
number of layers or their width introduces new parameters which increase the
use of computational resources. The creators of the Inception net describe the
motivation behind their architecture as follows:

“The main idea of the Inception architecture is based on finding out how
an optimal local sparse structure in a convolutional vision network can be ap-
proximated and covered by readily available dense components.”

We first introduce the naive Inception module and then explain how the addi-
tion of 1× 1 convolutions reduces the computational costs of the module.

2.2.1 Inception Module

The naive Inception module consists of 1×1, 3×3 and 5×5 filters, as well as a
3×3 max pooling layer. Figure 2.5 shows the naive approach. All layers use the
’SAME’ configuration so they keep their dimensions. The original Inception
net had seven Inception modules stacked on top of each other. As justification
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for the use of 1× 1 convolutions, let us consider the following example. Given
an input(28 × 28 × 192) to a 5 × 5 convolution with the same configuration
(s = 1, p = 1) and 32 filters we would need 28 · 28 · 32 · 5 · 5 · 192 ≈ 120
million multiplications. Modern computer architectures are capable of doing
120 million multiplications, but we must consider that this is only one module
of seven and that there are additional layers outside of the Inception modules.
The next section shows how we can reduce this computational burden.

Figure 2.5: Naive version of the Inception module [SLJ+14].

2.2.2 1× 1 Convolutions

Figure 2.6 shows the actual Inception module. As one can see, the 1 × 1
convolutions happen before the 3×3 and the 5×5 convolutions. Following the
example from the previous section, we now need 28·28·16·1·1·192 ≈ 2.4 million
multiplications for the 1×1 convolution with 16 filters and 28·28·32·5·5·16 ≈ 10
million multiplications for the 5× 5 convolution with 32 filters. This approach
now uses only 10% of the multiplications used in the naive approach. One
can view the 1×1 convolutions as low-dimensional embeddings comparable to
word embeddings from natural language processing.

13



CHAPTER 2. BACKGROUND

Figure 2.6: Inception module with dimension reduction [SLJ+14].

2.3 ResNet

Empirical results have shown that if you make neural networks deeper they
should produce better results [GBI+13]. New practical experiments, however
[HZRS15], have indicated a contrary behavior with an increasing depth of the
networks. The authors of the Residual Net have seen a phenomenon called
the degradation problem that occurs if convolutional networks with more
layers are given worse training and test errors than a shallow one (Figure 2.7).
Consider a shallow architecture and a deeper equivalent that adds more layers
to the shallow one. When we copy the weights from the shallow one to the
deeper net and the added layers are identity mappings, both networks should
produce the same results. The experiments, however, showed that current
solvers are unable to find these identity mappings.

14
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Figure 2.7: Comparison of 20-layer and 56-layer networks are compared. The
left shows there the training error on CIFAR-10 and the right shows the test
error. Contrary to the theory, the shallow network has a lower training and
test error. The author experienced a similar phenomenon on the ImageNet
benchmark [RDS+15].

Residual nets therefore introduced short cuts, also called skip connections,
to convolutional neural nets. They enable the network to learn identity map-
pings and skip one or more layers. They add neither extra parameters nor
computational complexity. Residual networks show that the usage of skip
connections enables them to produce better results with deeper nets.

Inception-ResNet [SIV16] combines the Inception module from the Inception
Net and the skip connections from the Residual Net. The authors found
that residual connections accelerate the training of Inceptions networks sig-
nificantly.
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Chapter 3

Convolutional Object Detectors

This chapter discusses different convolutional object detectors based on con-
volutional neural networks (CNNs). In contrast to the classification task, the
object detectors work on small regions of the input image, also called region
proposals. We further discuss the possibilities for generating these region pro-
posals, also called regions of interest (RoI). We introduce the three object
detectors which are also used in the Experiments and Results chapter. There
also exist several other object detectors, such as YOLO [RDGF15].

3.1 Regional CNN (R-CNN)

The Regional convolutional neural network (R-CNN) [GDDM13] was the first
object detector to use convolutional neural nets as a feature detector for object
detection. In 2012 it defeated the system that was the best at the time by 30%
in the VOC2012 challenge. The approach splits the object detection task into
two simpler ones:

1. Region proposal generation
Given an image I, generate a list of region proposals which likely contain
an object of interest.

2. Region classification
Given a region proposal, classify it as an object of class C.

In R-CNN the first task uses an approach called selective search [UvdSGS13].
Selective search uses a bottom-up segmentation, merging regions of different
sizes, and tries to group adjacent regions by texture, color and intensity. It
runs relatively fast on a CPU: for 1000 region proposals it needs only a few
seconds. However, as we will see in the Faster R-CNN section, this computa-
tion is the bottleneck for the inference step in the neural network.
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CHAPTER 3. CONVOLUTIONAL OBJECT DETECTORS

For the second task R-CNN takes the region proposals from the selective search
as input. The recall of the region proposal method must be high, because oth-
erwise the network will not be able to classify them if they are not detected.
To achieve a high recall the region proposal algorithm often outputs a huge
number of regions (around 2000 for a standard image). The task of the R-CNN
is to test whether these regions are significant and to classify the objects they
represent. The last fully connected layer is often modified according to the
number of classes in the specific dataset. The convolution net is frequently
pretrained on ImageNet to increase the quality of the low-level features such
as edge detectors. After the pretraining, the net is fine-tuned on the region
proposals and outputs an embedding of the features learned. On top of this,
multiple support-vector-machines (SVMs) which have been trained separately
for each class, classify the fixed size embedding. Additionally, a bounding-box
regression is performed to tighten the bounding-box positions around objects.
Figure 3.1 shows the architecture of the R-CNN.

Figure 3.1: The architecture of R-CNN [Hui].

3.1.1 Drawbacks

Using and training the R-CNN network is a complex process. It requires the
pretraining of the convolutional net on a huge dataset such as ImageNet. In
addition, it must be fine-tuned with the new object classes and the background
classes. For each image the proposals have to be saved to the disk and warped
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CHAPTER 3. CONVOLUTIONAL OBJECT DETECTORS

to the CNN input size. For each class there is also binary SVM which has be
to trained to distinguish between object and background. Finally a regression
was performed to tighten the bounding boxes around the objects. The training
of such a model took multiple days because the network was trained on each
proposal. The test time per image was extremely slow, up to one minute per
image, even on a GPU. The next model, an improvement to R-CNN, shows
how we can achieve the same accuracy without training the CNN for each
proposal.

3.2 Fast R-CNN

Fast R-CNN[Gir15] is an object detector based on R-CNN. It still uses as
an input region proposals from methods such as selective search. Instead of
training the network for each region, it is trained now for each image and shares
the computation across ≈ 2000 proposals. Each region does not need the whole
extracted feature map from the CNN: only the features at the spatial local of
the region are important. The region of interest pooling layer (RoIPool) is
responsible for the mapping. RoIPool shares the forward pass of a CNN for
the original image across its regions. The RoIPool layer is located after the
last convolutional layer (see figure 3.2).

Figure 3.2: Location of the RoI pooling layer in Fast R-CNN. Image from [San]

The fixed-length vectors from the RoIPool layer are then fed into fully-
connected layers that are connected to two output layers: a real-valued layer

18



CHAPTER 3. CONVOLUTIONAL OBJECT DETECTORS

that outputs bounding box coordinates computed during regression and a soft-
max layer that produces probability estimates for the different object classes.
In Fast R-CNN, binary SVM and linear regression are not used. Compared to
R-CNN, Fast R-CNN reduces the training time by up to a factor of 18, and
the test time by a factor of up to 100.

3.3 Faster R-CNN

Faster R-CNN [RHGS15] removes the inference bottleneck selective search
from Fast R-CNN by using a region proposal network (RPN) which outputs
regional proposals for each image. It is nearly computation free because Faster
R-CNN uses a single network for the region proposals and classification of the
regions. In the next section we explain region proposal networks and how they
work.

3.3.1 Region Proposal Network

The RPN takes an image as input and outputs several rectangular region pro-
posals. It uses a fully convolutional network [SLD17] to generate the proposals.
A sliding window is moved across the features map of the last shared convo-
lutional layer. This window has a size of n × n (the authors used n = 3)
and is fed into two fully connected layers, a box regression layer reg and a
box classification layer cls. The authors state that for the VGG features map
the receptive field is 228 pixels large. For every sliding window, they predict
multiple region proposals depending on the number of anchors. Anchors are
centered at a specific sliding window and are associated with a scale and aspect
ratio. These anchors are translation invariant, and the RPN guarantees that
if an object in an image is translated the network will predict the proposal in
either location. The performance of the architecture is sensitive to the number
of anchors and their different scales and aspect ratios [RHGS15]. The RPN
loss function is defined as:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

.
Here i is the index of an anchor and pi is the probability of anchor i being

an object. p∗i is the ground-truth label and is 1 if the anchor is positive and 0 if
the anchor is negative. t∗i and ti are vectors representing the four coordinates
of the ground truth and the predicted bounding box. Lcls is the classification
loss over two classes and Lreg is the L1 norm for the regression. Ncls is the
batch size and Nreg is the number of bounding boxes. Both are needed to
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normalize the function. λ is used as a weighing factor to either increase or
decrease the influence of the classification or the regression.

The RPN is trained end-to-end by backpropagation and stochastic gradient
descent [LBD+89]. There are two general approaches for training the net-
works: alternating training where the RPN and the CNN are trained in turns,
or joint training where both networks are merged into one network during train-
ing. Each iteration performs region proposal generation, the network classifies
the regions and computes the loss functions, the backpropagation step com-
bines the RPN loss and the convolutional loss and signals it back through the
network.

3.4 Region-based Fully Convolutional Networks

Region-based Fully Convolutional Networks [DLHS16] (R-FCN) are compa-
rable in terms of architecture with the Faster R-CNN network. They follow
the popular two-stage object detection strategy, which consists of generating
and subsequently classifying region proposals. In Faster R-CNN there is a
dilemma of increasing translation invariance for image classification vs. re-
specting translation variance for object detection[DLHS16]. The image classi-
fication task requires translation invariance, and small changes of an object in
an image should not affect the classification result. The object detection task
however requires translation variance, a translated object must be recognized
at a different location. In Faster R-CNN this issue is resolved by implementing
a deep RoI subnetwork at the end of the architecture that improves accuracy
but increases computational requirements due to the unshared per-RoI com-
putation for each region. R-FCN avoids this by introducing position-sensitive
score maps and position-sensitive RoI pooling to achieve translation variance
without the use of a fully connected layer at the end of the network. On top
of the newly introduced layer, no weight layers following (see figure 3.3) for an
overview). In the aforementioned publication, the authors achieve the same
accuracy on PASCAL VOC datasets [EEG+15] as Faster R-CNN with an test
time reduction of 2.5× to 20×.
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Figure 3.3: Overview [DLHS16] of the R-FCN architecture. An RPN suggests
RoIs, which are then applied on the score maps.

3.5 Single Shot MultiBox Detector

Single Shot MultiBox Detector (SSD)[LAE+15] uses a complete different ap-
proach from that of Faster R-CNN and R-FCN, which completely eliminates
the proposal generation step. SSD generates object detections using a single
feedforward pass of the network. They use a set of default bounding boxes
for each feature map cell at the end of the network. The default boxes are
similar to the anchors in Faster R-CNN, but they are applied to several fea-
tures map of different resolutions. This allows them to discretize the space of
possible output shapes. The method generates a huge number of dense bound-
ing boxes, which are mostly eliminated through a non-maximum suppression
stage [LAE+15]. Most region proposals contain no interesting objects they
are discarded after the object detection phase if they fall below a predefined
confidence threshold.
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Chapter 4

Object Detection in UAV
Images

We start this chapter with the problem statement. We then discuss problems
which occurred during the practical work and present possible solutions. The
solutions are then tested in the following chapters through multiple experi-
ments.

4.1 Problem Statement

Bird’s-eye view images from different seismic lines are captured from an un-
manned aerial vehicle. We look for a function which has an image as input
and outputs bounding boxes covering conifer seedlings. This task is known as
object detection and is a standard problem of computer vision. We show that
current state-of-the-art algorithms, particularly convolutional neural networks
(CNNs) are able to extract meaningful information from the aerial images.
The main task of the thesis is to review these techniques and adapt them to
the special images we have. We also perform experiments to understand how
variables such as flight height and boreal forest seasons influence the object
detection task.

4.2 Dataset

The main task of the experimental part is to test how well object detectors
can perform on images taken from unmanned aerial vehicles (UAVs). We used
a collection of 859 images from five different seismic lines (see table 4.1). The
objective was to detect small conifer seedlings in the images and draw bounding
boxes around them (See figure 4.1).
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Figure 4.1: The goal of the object detector is to predict the location of the
conifer seedlings (green bounding box) after training on annotated (red bound-
ing box) conifer seedlings.

Site Flight Height Month of the Year Resolution GSD per pixel Images
441 5 m 08 4000 × 3000 3.5 mm 39
441 30 m 08 4864 × 3648 7.5 mm 97
449 5 m 08 4000 × 3000 3.5 mm 51
449 30 m 08 4864 × 3648 7.5 mm 93
450 5 m 08 4000 × 3000 3.5 mm 34
450 5 m 10 4000 × 3000 3.5 mm 94
450 30 m 08 4864 × 3648 7.5 mm 91
450 30 m 10 4864 × 3648 7.5 mm 91
464 5 m 08 4000 × 3000 3.5 mm 37
464 5 m 10 4000 × 3000 3.5 mm 115
466 5 m 08 4000 × 3000 3.5 mm 35
466 5 m 10 4000 × 3000 3.5 mm 82

Table 4.1: Overview of the seismic line dataset

The ground sample distance (GSD) in an image is the distance between two
pixels in the image measured on the ground. For example, in an image with a
1 mm GSD, adjacent pixels are 1 mm apart on the ground. The ground sample
distance is a measure of the image quality. Later we present experiments to
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determine the influence of the GSD on the object detection accuracy. The
GSD in cm/pixel is defined as follows:

GSD =
Sw ∗H ∗ 100

Fr ∗ Iw

where Sw is the sensor width(mm), H is the flight height(m), Fr is the fo-
cal length of the sensor(mm) and Iw is the image width in pixels.

Deep convolutional networks require a large amount of training data. Since col-
lecting and annotating a dataset requires a significant effort, we labeled only
some of the available images. We focused our labeling on seismic lines 464
and 466 because they have the best lightning conditions and the most conifer
seedlings. Training modern ConvNets can take 2-3 weeks across multiple GPUs
on ImageNet. We therefore used pretrained models from the TensorFlow Ob-
ject Detection API (see section 5.1 for more information). To understand the
influence of the pretraining on performance, we conducted experiments whose
results are presented in the following chapters. Since low-level features such
as edge detectors are easily transferable to new datasets and are especially im-
portant for object detection, we anticipate a major improvement in accuracy
compared to networks without transfer learning. Initializing a network with
transferred features independent of the layer can also result in an improve-
ment in the generalization performance compared to random weights after
fine-tuning to a new dataset [YCBL14].

4.3 Cropping

This section explains how we preprocessed the images from the seismic line
dataset. We decided to slice one image into several smaller ones because of the
high resolution of the images(4000×3000). Object detectors with convolutional
neural networks as feature extractor often require a huge amount of GPU
memory. The requirements for the graphical processing unit memory increases
in proportion with the image resolution. We initially opted for a resolution of
512× 512 because we thought the resolution was low enough to be efficiently
fed into a neural network, but not too small to avoid truncated seedlings. Since
the images had a resolution of 4000 × 3000 and 512 is not divisible without
remainder, we could only fit seven rows and five columns of slices in an image
(see figure 4.2).
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Figure 4.2: Slices of original image

We lose parts of the picture on the right and lower sides of the image.
Since the images shot from the UAV overlap vertically, we do not lose much
information. The conifer seedlings are usually located centrally on the image,
so the missing information on the right side also does not affect the number of
seedlings in the image.

A statistical dataset analysis showed that the average seedling in the images
has a size of about 110×110. We also extracted the smallest seedling (23×19)
and the largest (471× 453) one (see figures 4.3 and 4.4 for more information).
With a ground sample distance of 3.5 mm, the average seedling can be fit into
a 30 × 30 cm bounding box, the smallest seedling within a bounding box of
8× 6 cm, and the largest one within a bounding box of 1.6× 1.7 meters.
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Figure 4.3: Histogram of seedling height

Figure 4.4: Histogram of seedling length

The cropping size of 512× 512 turned out to be suitable. All models could
be trained with this resolution and even the largest conifer trees that can still
be classified as seedlings fit into a single slice.

4.4 Labeling process

After we sliced the image into several smaller ones, we started to label the
seedlings on the seismic line dataset. We used the graphical image annotation
tool LabelImg [Tzu15] to annotate the seedlings in the images (see Figure 4.5).
LabelImg saves the annotations in the PASCAL VOC format.
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Figure 4.5: Labeling of the seedlings with labelImg

In total we sliced 269 images in 9415 cutouts and labeled the seedlings
in all the cutouts. We annotated 3940 conifer seedlings in the 9415 picture
slices from the seismic line 464 and 466. First, we labeled some images from
site 464 from summer and winter and trained the first model on the data.
We used the model to annotate the remaining images from sites 464 and 466
in order to have more data available. We manually fixed errors found to be
contained in the annotations. However, manually moving the bounding boxes
to the right spot is much faster than drawing them, so the labeling speed
increased dramatically when using the annotations from the first model. We
labeled all seedlings at the border of the slice if more than 50% of the seedling
was visible. Since the pretrained network on PASCAL VOC does not have
classes for conifer seedlings, we had to finetune the networks to detect them.
In the following chapters we present the results from experiments regarding
how many conifer seedlings annotations we need to reliably detect them in the
test set. Since the first model was already quite good for annotating unseen
images, we hypothesize that a small number of annotations (≈ 200) will be
enough for good object detection accuracy (mAP > 0.5).

4.5 Training and Test Set

To generate a training and test set, we could not use the standard practice of
sampling because images in the dataset often overlap, and it can not be ruled
out that slices from different images overlap. This would mean that the same
seedlings could appear in both the train and test set. We decided to use all
image slices from site 466, all the summer images from site 464 and half the
winter images from site 464 to build the training set (1863 image slices). The
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test set consists of half the winter images from site 464 and consists of 661
image slices. Since the drone captured seismic lines often bidirectionally and
sometimes four times, we had to assemble the training and test set manually
to avoid overlapping. For the reduced training set with fewer annotations (see
Section 6.8) we randomly deleted images from the standard training set until
we had the correct number of annotations.

4.6 Lighting conditions

The summer images from seismic line 464 and the winter images from site 466
suffer from lighting problems (see Figure 4.6).

Figure 4.6: Example of an image with lighting problems. The seedling inside
the blue bounding box has a different color than the one with the red bounding
box.

During the labeling process it was often difficult to distinguish the conifer
seedlings from the other vegetation. The lighting conditions further compli-
cated this process. Because of the sun and the resulting shadows, conifers
often appear as different colors. In the following chapter we present results
from experiments regarding whether the object detector can be improved by
using black/white images. We hypothesize that the colors are important to
distinguish the conifer seedlings from other plants with similar shapes.
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4.7 Seasonal effects

To understand the seasonal influence on the object detection accuracy we
labeled both summer images (August) and winter images (October) at both
sites (see figure 4.7 for a comparison).

(a) Summer image example (b) Winter image example

Figure 4.7: Comparison of boreal seasons

During the labeling stage we had more problems with summer images be-
cause of the dense vegetation. In some images it was difficult to distinguish
the conifer seedlings from other plants. We believe that the object detector
will have a significantly lower accuracy in these images compared to those from
winter. Furthermore, we hypothesize that the features from the object detec-
tor trained on the summer image are more helpful for detecting seedlings in
the winter image than vice versa. We review these hypotheses in the Chap-
ter 6. To verify this, we constructed a dataset with all the summer images
(n = 453) and a dataset with all winter images (n = 2073) to train a model on
the summer/winter set and check the object detection accuracy on the other
one. We also split the summer and winter dataset in training and test sets to
determine which season presents more problems for the object detector. We
decided to have a similar number of annotations for the winter and summer
training set, so that the amount of data does not influence the results. For an
overview see table 4.2.
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Dataset sites images
Summer(total) 464, 466 453
Winter(total) 464, 4668 2073
Summer(train) 464, 466 519
Summer (eval) 466 215
Winter (train) s466 761
Winter (test) s464, s466 869

Table 4.2: Overview seasonal datasets.

4.8 Flight height

The seismic line dataset contains images from 5 and 25 m flight height. Since
labeling additional images at 25 m requires significant effort, we down-sample
the 5 m images to a ground sampling distance comparable to images captured
at 25 m. We hypothesize that with increasing flight height, and therefore
lower ground sampling distance, the object detection accuracy will deteriorate.
We also hypothesize that an increase in flight height by a factor of 6 (30 m)
significantly impairs the object detection performance, because the seedlings
in the 25 m images were difficult to identify. The authors of the paper Super-
Resolution of Sentinel-2 Images: Learning a Globally Applicable
Deep Neural Network[LBG+18] describe a process of down-sampling images
by first blurring them using a Gaussian filter with a standard deviation of
σ = 1

s
and then averaging over s×s windows where s is the desired scale ratio.

This process is an approximation of actual images shot at this flight height.
It does not include the alteration of angles. We conduct experiments with s
∈ {3, 5, 7, 9, 21, 31} which results in images shot from 15, 25, 35, 45, 105 and
145 m height. See figure 4.8 for an example.
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(a) Original flight height (5m) (b) Down-sampled to 25m

(c) Down-sampled to 45m (d) Down-sampled to 105m

(e) Down-sampled to 145m

Figure 4.8: Down-sampling examples
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Experiment setup

All models were trained on a computer with an Nvidia GEFORCE GTX 1080
Ti as GPU, 128GB Ram and an Intel i7-5930K CPU. For training on the
GPU we used CUDA 9.0 and TensorFlow 1.6. We trained the models up to
60,000 steps, because in most cases the fine training of the networks reached
a low training error around this point. The Faster R-CNN and R-FCN with
ResNet-101 CNN had a step/sec of 0.15, which resulted in a training time of
≈ 3 hours. In the next section we introduce the TensorFlow Object Detection
API and describe the available methods and their parameters. The end of the
chapter discusses the evaluation of the experiments.

5.1 TensorFlow Object Detection API

We decided to use the TensorFlow Object Detection API because deep convo-
lutional neural networks require a large amount of labeled training data. The
framework offers a huge number of pretrained detection models which low-
ers the requirement of labeled training data. See table 2.1 for an overview of
available pretrained models on the COCO dataset [LMB+14]. To train a model
with the API, one first has to clone the repository and download the frozen
models. Furthermore, the API requires a label map with all the classes which
exist in one’s own dataset. We also had to construct a persistent data struc-
ture, called TensorFlow Records. TensorFlow Records are the combination of
the images and the annotations in XML. The TensorFlow API has multiple
configuration files for the different object detectors and convolutional neural
net combinations. These configuration files must be adapted to the custom
training and evaluation set.
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Object Detector Convolutional Net Speed (ms) COCO MAP
SSD MobileNet 30 21
SSD InceptionV2 42 24
R-FCN ResNet101 92 30
Faster R-CNN InceptionV2 58 28
Faster R-CNN ResNet50 89 30
Faster R-CNN ResNet101 106 32
Faster R-CNN InceptionResNetV2 620 37
Faster R-CNN NAS 1833 43

Table 5.1: List of available pretrained object detectors in the TensorFlow
Object Detection API and their performance and speed parameters

The Object Detection Training Pipeline can be configured by modifying
the pipeline.proto file. At a high level the configuration file consists of five
parts:

1. The model configuration
This defines the object detector and the feature extractor.

2. The training configuration
This section is for specifying the hyper parameters, such as the number
of steps and learning rate. One can also define preprocessing techniques
and define checkpoints of pretrained networks.

3. The training input
Here the user can specify the training set and give further instruction
concerning whether the data should be shuffled.

4. The evaluation configuration
Here one can generate object detection visualizations and define multiple
metrics for the evaluation.

5. The evaluation input
This is where one defines the evaluation set. Typically this should be
different from the training input dataset but one can also use the training
input here to test whether the model suffers from overfitting.

The configuration file used a format with the name protocol buffers for
serializing the data. The API also provides the user with predefined training
and evaluation starting methods for the network.
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5.2 Evaluation

For the evaluation of object detectors the most frequently used metric is mean
average precision (MAP) [SM86]. In order to calculate the MAP we first
explain the calculation of intersection over union (IoU). The IoU is a ratio
between the union and the intersection of predicted and ground truth boxes.
It is also known as the Jaccard Index in reference to Paul Jaccard. Given two
bounding boxes, A and B, the IoU is defined by:

IoU(A,B) =
A ∩B
A ∪B

where the intersection operation is defined as the pixels that rectangles
A and B share. The union operation is defined as the combined pixels from
rectangles A and B. The MAP values are calculated for a fixed IoU thresh-
old(usually IoU = 0.5, so that the ground truth and bounding boxes overlap
in at least 50% of the area).

In order to calculate the MAP in the area of object detection [EEG+15], one
needs to calculate the AP for each class (in this work there is only one seedling
class), and then compute the mean over all classes. To calculate the AP for a
class, one needs to compute the precision (P) and recall (R):

Precision =
TP

TP + FP

Recall =
TP

TP + FN

True positives (TP) are the detections with IoU > 0.5. False positives (FP)
are the detections with IoU ≤ 0.5 or that have already been detected. False
negatives (FN) are the number of objects were the method failed to produce
bounding-boxes. In the context of object detection there are no true negatives
(TN) because the images are expected to contain at least one object. Each
bounding box also has a confidence value for a given class. A scoring method
sorts the predictions in order and computes the precision and recall for each
possible rank. The precision-recall curve is obtained by taking the recall values
in the interval [0, 1] and maximizing the precision for each value. Taking the
mean of all values yields the AP for the class.

This metric can easily be used to compare different approaches to object
detection, as seen in the next chapter. Since we have only one class in our
experiments the mean average precision is equal to the average precision of
the seedling class. Generally, when recall increases, precision decreases and
vice versa: a sensitive model is able to capture a large percentage of objects
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in an image, but also generates a high number of false positives. A model
with a high threshold for detection yields few false positives but also leaves a
higher percentage of objects undetected. The best balance between these two
depends on the application area.

5.3 Hyperparameters of the Models

This section describes the hyperparameters we used for training Faster R-CNN,
R-FCN and SSD.

Starting with Faster R-CNN and R-FCN the pretrained models had 12 anchors
(4 different scales and 3 aspect ratios), used a maximum of 300 proposals in
the first stage and weighted the localization loss by a factor of two. We used
a batch size of one since we only had one GPU available and the memory was
a limiting factor. We used stochastic gradient descent with momentum with a
static learning rate of 0.0003 to optimize the loss function.

For the object detector SSD we used anchors with five different aspect ratios
and multiple scales ranging from 0.2 to 0.95. The detector used 100 proposals
and weighted classification and localization with the same weight. Since SSD
uses a smaller network (Inception v2) and has a simpler architecture, we were
able to increase the batch size to 24. We used the RmsProp optimizer [TH12]
and an exponential decay learning rate beginning at 0.004 and having a decay
factor of 0.95. In none of the models did we use regularization methods other
than batch normalization. We followed the advice from the TensorFlow Object
Detection API where they used the hyperparameters according to the publi-
cations ones. In the thesis we focused on comparisons of different models and
CNN architectures. The next step would be to finetune the hyperparameters
of the best models.
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Experiments and Results

In this chapter we present several experiments to evaluate the questions and
hypotheses from the Chapter 4. We do this by training the SSD, R-FCN and
Faster R-CNN models on the specified training and test sets and evaluating
their object detection performance through the MAP evaluation metric and
the precision-recall curve.

6.1 Comparison of Object Detectors

We first trained several models to compare the different object detectors with-
out transfer learning. Faster R-CNN and R-FCN used ResNet101 as convolu-
tional neural net, while SSD used a Inception v2 net. The plotted precision-
recall curve and the MAP are presented in figure 6.1 and table 6.1.
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Figure 6.1: Precision-recall curves for Faster R-CNN, R-FCN and SSD without
transfer learning.

Object Detector MAP COCO MAP
SSD 0.65 0.24
R-FCN 0.68 0.30
Faster R-CNN 0.71 0.32

Table 6.1: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset and the COCO dataset. The evaluation used MAP@[0.5]IoU
as the metric.

Faster R-CNN had the best performance on the test set, followed by R-FCN
and SSD. All three detectors achieve high recall values which are important
for remote sensing of the seismic line. Compared to the detection quality from
the detectors on COCO even the worst model, SSD performs far better on our
custom dataset. The reason for this is that the COCO dataset has 80 different
object categories and a large amount of different images compared to ours. If
we added additional classes (see Chapter 8) the performance would be likely
to decrease.
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6.2 Transfer Learning

In this section we benchmark SSD, R-FCN and Faster R-CNN against each
other with pretrained models on the COCO dataset. Training on a huge
dataset like ImageNet or COCO should enable the network to learn low-
dimensional features such as edge detectors which are transferable to our cus-
tom dataset. R-FCN and Faster R-CNN use pretrained weights from ResNet-
101 whereas SSD uses Inception Net v2.

Figure 6.2: Precision-recall curves for Faster R-CNN, R-FCN and SSD with
transfer learning.

Object Detector MAP without TF MAP with TF Increase
SSD 0.65 0.58 -0.07
R-FCN 0.68 0.71 0.03
Faster R-CNN 0.71 0.81 0.10

Table 6.2: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset with and without transfer learning (TF). The evaluation used
MAP@[0.5]IoU as the metric.

Faster R-CNN and R-FCN benefit from the pretrained ResNet-101 models by
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increasing the MAP by 14% and 4%, respectively. The precision at low recall
values increases compared to the non-pretrained models, whereas the recall for
low precision values remains constant. The usage of the pretrained Inception
v2 net decreases the performance of the SSD object detector by 11%. Further
tests would be necessary to understand whether the decrease is caused by the
underlying convolutional neural net or the object detector.

6.3 Preprocessing results

To understand the influence of the color channels on the object detectors we
trained several models on black/white images. Since no black/white pretrained
models are available in the TensorFlow Object Detection API, we started the
training from randomized weights. Figure 6.3 and table 6.3 show the results.

Figure 6.3: Precision-recall curves for Faster R-CNN, R-FCN and SSD on
black/white images.
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Object Detector BW No preprocessing Increase
SSD 0.36 0.65 -0.29
R-FCN 0.57 0.68 -0.11
Faster R-CNN 0.54 0.71 -0.17

Table 6.3: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset with black and white images (BW) and no preprocessing.
The evaluation used MAP@[0.5]IoU as the metric.

The usage of black/white images impaired the performance of all object
detectors significantly. SSD has the biggest loss in performance followed by
Faster R-CNN and R-FCN. The precision-recall curves show that the precision
decreases significantly from the previous precision-recall curves. This indicates
that the color is an important feature in distinguishing the seedlings from the
other vegetation. Although many images suffer from bad lightning conditions
and the resulting color deviations, the usage of black andwhite images is not
beneficial for object detection on the seismic line dataset.

6.4 CNN architecture and layer depth

In this section we use different convolutional neural network architectures
namely Inception v2, ResNet-50, ResNet-101 and Inception ResNet v2, in
combination with Faster R-CNN to ascertain whether layer depth and model
complexity have an advantageous effect on detector performance. See table
6.4 for a comparison of the architectures.

Object Detector No. of layers Parameters MAP
Inception v2 42 10 M 0.66
ResNet-50 50 20 M 0.66
ResNet-101 101 42 M 0.81
Inception Resnet v2 467 54 M 0.71

Table 6.4: Comparison of multiple Faster R-CNN architectures on the conifer
seedling dataset. The evaluation used MAP@[0.5]IoU as the metric.

We found that on smaller convolutional architectures Inception v2 achieved
the same performance as ResNet-50 although it has only half the parame-
ters. On deep architectures, ResNet-101 outperformed Inception ResNet v2
although it has 10 million fewer parameters. On this dataset the networks
with Inception modules provide an advantage on small networks. On deeper
networks the convolutional neural networks with residual connections benefit
more than networks with the Inception modules. This is due to the degradation
problem with deeper networks(see section 2.3 for more information).
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6.5 Data augmentation

In this section we present the results from experiments concerning whether
data augmentation techniques improve object detection performance. For the
SSD object detector we used random horizontal flips and random crops as
data augmentation options. Since the SSD object detector has difficulties with
small objects (see [LAE+15]), we hoped that the usage of random crops would
function as a zoom mechanism and increase the performance of the object
detector, as the authors described. For Faster R-CNN and R-FCN we used
random horizontal flips and random 90 degrees rotations as data augmentation
options. An overview of the results is presented in figure 6.4 and table 6.5.

Figure 6.4: Precision-recall curves for Faster R-CNN, R-FCN and SSD with
data augmentation.

Object Detector No augmentation Data augmentation Increase
SSD 0.58 0.69 0.11
R-FCN 0.71 0.76 0.05
Faster R-CNN 0.81 0.80 -0.01
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Table 6.5: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset with and without data augmentation. The evaluation used
MAP@[0.5]IoU as the metric.

For the SSD feature extractor, data augmentation resulted in a large in-
crease of 19%, R-FCN also benefited from the random rotations and horizontal
flips with an increase of 7%. For Faster R-CNN we saw no increase in perfor-
mance compared to no data augmentation. The increase for the SSD object
detector is mainly based on the performance increase (+27%) on small objects
(see section 7.1.1 for more information).

6.6 Seasonal influence

To understand the influence of the seasons on the object detector performance,
we formed winter and summer data sets (see section 4.7). Table 6.6 gives
an overview of the different training configurations and the object detection
performance.

Object Detector S W Train W | Eval S Train S | Eval W
SSD 0.45 0.41 0.08 0.13
R-FCN 0.69 0.59 0.21 0.33
Faster R-CNN 0.71 0.65 0.27 0.41

Table 6.6: Overview of the seasonal training configurations. S stands for
summer and W for winter. The used metric is MAP@[0.5]IoU.

Contrary to our belief during the labeling, the object detection performance is
actually higher in the summer dataset than the winter dataset. Faster R-CNN
(9%), R-FCN(16%) and SSD(9%) all perform better on the summer dataset.
This result is even more surprising since the winter training dataset(n = 761) is
slightly larger than the summer dataset(n = 519). A further result is that the
model trained on the summer data detects conifer seedlings in winter images
with a higher accuracy than vice versa. This is because the models trained
on the winter data are not able to distinguish the conifer seedlings from other
vegetation.

6.7 Resolution dependency

In order to understand how the flight height influences the object detection
accuracy we conducted experiments on down-sampled images(see section 4.8
for detailed information on the down-sampling process). We trained models
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on the down-sampled training set and evaluated them on the down-sampled
evaluation set (see table 6.7 for results). We also used the models trained on
the standard training set and evaluated the performance on the down-sampled
evaluation set (see table 6.8 for results).

Object Detector 5 m 15 m 25 m 35 m 45 m 105 m 155 m
SSD 0.58 0.56 0.56 0.52 0.50 0.45 0.38
R-FCN 0.71 0.72 0.66 0.68 0.67 0.57 0.44
Faster R-CNN 0.81 0.78 0.75 0.72 0.72 0.66 0.55

Table 6.7: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset. All models were trained and evaluated on the down-sampled
dataset.The evaluation used MAP@[0.5]IoU as the metric.

The object detector performance decreases gradually with increasing flight
height across all object detectors. The results show that Faster R-CNN is able
to detect conifer seedlings reliably even in images shot from 155 m.

Object Detector 5 m 15 m 25 m 35 m 45 m 105 m 155 m
SSD 0.58 0.51 0.44 0.31 0.17 0.01 0.00
R-FCN 0.71 0.59 0.44 0.29 0.16 0.00 0.00
Faster R-CNN 0.81 0.71 0.56 0.38 0.22 0.03 0.02

Table 6.8: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset. All models were trained on the standard data and evaluated
on the down-sampled dataset. The evaluation used MAP@[0.5]IoU as the
metric.

The object detection performance decreases significantly in evaluation on
the down-sampled evaluation set with the usage of standard models (models
trained on 5 m images). The models rely on the sharpness of the conifer
seedlings for detection. Through the down-sampling process and the resulting
loss in sharpness the object detector loses the ability to detect them. The
Faster R-CNN standard model can still be used on images taken from up to
25 m, whereas SSD and R-FCN already have problems(mAP < 0.5) with 15
m images.

Figure 6.5 below shows the dependency between the flight height in meters
and the performance of the object detector in terms of MAP. It should be kept
in mind that the graph consists of lines in order to improve the perception of
the trend. We only evaluated the models at the points on the line. The values
between the evaluation points are approximations.

43



CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.5: Dependency between the accuracy of the object detectors
(MAP@[0.5]IoU) and the image resolution (in meters of flight height).

6.8 Dataset size

To determine how many annotations we need for good object detection perfor-
mance (MAP > 0.5), we performed several benchmarks on different training
set sizes. Table 6.9 shows the performance of Faster R-CNN, R-FCN and SSD
on different numbers of annotations during training. We also used pretrained
models to further investigate the influence of transfer learning by comparing
the results to models without pretraining.

Object Detector 200 500 1000 2000 3940
SSD 0.16 0.30 0.39 0.51 0.58
R-FCN 0.66 0.67 0.69 0.73 0.71
Faster R-CNN 0.68 0.70 0.75 0.76 0.81

Table 6.9: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset on multiple training sets; all models were pretrained on
COCO. The evaluation used MAP@[0.5]IoU as the metric.

Faster R-CNN and R-FCN showed high accuracy on the evaluation set
even with only 200 annotations. SSD needed all annotations to get close
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to the performance of Faster R-CNN and R-FCN. The comparison without
pretraining (see table 6.10) shows a similar result.

Object Detector 200 500 1000 2000 3940
SSD 0.15 0.24 0.36 0.48 0.65
R-FCN 0.39 0.49 0.58 0.61 0.68
Faster R-CNN 0.52 0.59 0.62 0.65 0.71

Table 6.10: Comparison of Faster R-CNN, R-FCN and SSD on the conifer
seedling dataset on multiple training sets; all models had no pretraining. The
evaluation used MAP@[0.5]IoU as the metric.

Figure 6.6 shows the dependency between the number of annotations and
the object detection performance. Here we also used lines to show the slope
of the graphs although we performed the evaluation only at certain points (as
marked with in the graph). By roughly doubling the amount of training data
from 200 annotations to 500 annotations the performance of SSD increased by
87.5% (60% without pretraining). Faster R-CNN and R-FCN have an increase
of only 3% (14% without pretraining) and 1.5% (25% without pretraining).
Models without pretraining, in particular, profit from additional training data.

45



CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.6: Dependency between the accuracy of the object detectors
(MAP@[0.5]IoU) and the number of annotations.
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Discussion

This chapter presents the results from an error analysis on the standard model
and on resolution dependency problem. In conclusion, we summarize our con-
tributions from the evaluation chapter.

7.1 Error Analysis

We will take a closer look at the standard model to improve our understanding
of error sources.

7.1.1 Small, medium and large objects

To further analyze the source of errors, we split the evaluation set into three
parts. The seedlings specified as small (n = 197) have less than 7,000 pixels,
with a ground sampling distance of 3.5 mm per pixel; this includes all seedlings
smaller than 30 × 30 cm. The medium dataset contains all seedlings which
have more than 7,000 pixels and less than 35,000 pixels, which comprises all
seedlings up to 66× 66 cm (n = 128). The large dataset consists of seedlings
bigger than 66 × 66 cm (n = 36). We evaluate the standard models from
section 6.1 on the divided evaluation set.

Object Detector Small Medium Large All
SSD 0.43 0.79 0.99 0.58
SSD (augmentation) 0.55 0.84 0.97 0.65
R-FCN 0.48 0.85 0.99 0.71
Faster R-CNN 0.72 0.91 1.00 0.81

Table 7.1: Comparison of Faster R-CNN, R-FCN and SSD on the
conifer seedling dataset depending on seedling size. The evaluation used
MAP@[0.5]IoU as the metric.
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All three object detectors function almost without errors on the large
seedlings. On medium seedlings all detectors perform reasonably well, but
Faster R-CNN here begins to outperform the other detectors. Only Faster R-
CNN is able to reliably detect small seedlings. Figure 7.1 show the precision-
recall curves from Faster R-CNN on small, medium and large seedlings. The
model is able to detect 100% of the large seedlings with a precision of 90%.
90% of medium sized seedlings can still be detected with a false positive rate
of 20%. Small seedlings are more difficult for Faster R-CNN to detect. To im-
prove the overall performance, the best way would be to increase the detection
rate of small seedlings.

Figure 7.1: Precision-recall curves from Faster R-CNN for small, medium and
large seedlings

To understand how the resolution influences the detection rate of the
seedlings we evaluated 45 m and 105 m models using the divided evaluation
set.
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Object Detector Small Medium Large All
SSD (5 m) 0.43 0.79 0.99 0.58
SSD (45 m) 0.37 0.67 0.87 0.52
SSD (105 m) 0.31 0.72 0.86 0.45
R-FCN (5 m) 0.48 0.85 0.99 0.71
R-FCN (45 m) 0.58 0.80 0.98 0.68
R-FCN (105 m) 0.52 0.70 0.78 0.57
Faster R-CNN (5 m) 0.72 0.91 1.00 0.81
Faster R-CNN (45 m) 0.66 0.82 0.97 0.72
Faster R-CNN (105 m) 0.60 0.79 0.90 0.66

Table 7.2: Comparison of Faster R-CNN, R-FCN and SSD on the
conifer seedling dataset depending on seedling size. The evaluation used
MAP@[0.5]IoU as the metric.

The down-sampling of the images from 5 m to 105 m decreases the overall
performance of each object detector by an average of 0.14 MAP. The decrease
applies in the same way to all seedling sizes. All three object detectors are
able to detect all large and medium seedlings reliably on the 105 m images.
Only Faster R-CNN and R-FCN perform accurately on the small seedlings.

7.2 Overview of the results

Our main task in this thesis has been to analyze whether modern object detec-
tors can extract meaningful information from drone footage. Our best model,
a Faster R-CNN with ResNet-101 as a feature extractor pretrained on the
COCO dataset, achieved an mean average precision of 0.81. This performance
makes it possible to detect 8 of 10 conifer seedlings with an error rate of 20%.
On large and medium sized seedlings the accuracy is nearly flawless. For sim-
ple tasks like counting the number of seedlings in a seismic line, studying the
growth and survivability of conifer seedlings, and visualizing the distribution
of the seedlings, this detector is suitable. Further modifications regarding the
hyperparameters and introducing regularization is likely to increase the per-
formance even more since overfitting on the training set occurred.

Our benchmarks showed that, even with few labeled data available, complex
object detector architectures like Faster R-CNN are much better than small
architectures such as SSD. Pretraining on these networks resulted in a signifi-
cant performance increase, especially with little data.

Data augmentation techniques improved the performance of R-FCN and SSD
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(especially on small seedlings) but had no influence on the Faster R-CNN net-
work.

Even with a relatively small dataset of 4000 annotations, the Faster R-CNN ar-
chitecture benefited from deeper convolutional neural nets such as ResNet-101.

We also found that using drone footage from a combination of summer and win-
ter images yields the highest performance. The seasonal effect section showed
that the summer dataset is somewhat easier for the object detector to handle
than the winter dataset, despite the fact we had more problems labeling the
summer data.

We addressed the question of the influence of flight height on object detec-
tion performance. In the section on resolution dependency, we saw that Faster
R-CNN performs reasonably well even on down-sampled images similar to im-
ages taken from a flight height of 145 meters. This creates further possibilities
to increase the amount of data by collecting it with a wide range of unmanned
or manned aerial vehicles.

The training of object detectors does not rely on a massive amount of an-
notated data. Our experiment showed that Faster R-CNN performs well even
on small datasets consisting of 200 annotations.
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Conclusion and Future Work

Topics for further study include the usage of instance segmentation instead of
object detection. Instead of drawing a bounding box around objects instance
segmentation attempts to classify each object with a dynamic mask. The mask
assigns each pixel a value depending on whether it is object or background. The
technique would allow much more precise localization of the conifer seedlings.
Mask R-CNN [HGDG17] is an evolution of Faster R-CNN with an additional
branch for predicting an object mask in parallel with the existing branch for
bounding box recognition. It adds only a small amount of overhead to Faster
R-CNN and replaces the RoIPool layer with a RoIAlign layer, which greatly
improves the performance on small objects for object detection.

The usage of instance segmentation would make it possible to further add
objects such as fallen trees or tipped trees which can be used to create a mi-
crosite for vegetation establishment and seedling protection, since, according
to the restoration framework LIRA, they create a line-of-sight and movement
barrier for wolves. Bounding boxes are not precise enough to capture diago-
nally positioned trees. A further improvement to the information extraction
process would be the usage of a super-resolution network in front of the object
detection pipeline.

As we saw in the resolution dependency section our object detection perfor-
mance depends on the flight height of the aerial vehicle which captures the
images. In [LBG+18] the authors used a convolutional neural net to perform
end-to-end up-sampling. As input they used down-sampled images, and stan-
dard images as output. The network was able to learn the mapping from
40→ 20m and respectively from 360→ 60m GSD. This would enable the net-
work to increase the resolution and sharpness of the images to further improve
object detection performance.
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Since labeling involved an enormous amount of effort because of the dense
vegetation in the summer images, our evaluation set is not perfectly accurate.
Small seedlings or partially covered seedlings might not be detected in the
ground truth. GPS tagged seedlings from experts would improve the evalua-
tion set. It would further allow the use of images taken at high altitudes, as
such images are difficult to annotate manually.
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